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Abstract— Artificial neural networks (ANNs) have been applied to age-hardening of microhardness measurements, Hv , were obtained for 
sheets of Al-3wt.% Mg alloy and its tertiary alloys containing Sn from 0 to 2.5 wt.% in the temperature range 443-503 K, applied loads (10-
300 g) and dwell times (10 - 40 s). The age-hardening curves showed off leveling and pronounced oscillations indicating instability which, 
reflecting a competition between the effect of dynamic recovery or sub-structures coarsening and the effect of solute drag and precipitation 
hardening. Sn addition, increasing of aging temperature, T, load, L, and dwell time, t, caused a decrease in, Hv , due to the decrease of the 
amount of free Mg available for further precipitation hardening during the aging process. Rprop algorithm and ANNs were employed to 
obtain a mathematical formula describing the microhardness measurements. The simulated and predicted results showed good agreement 
with the experimental data. This study showed that the ANN model and Rprop algorithm are capable of accuracy predicting the age-
hardening process in the training and testing phases.       

Index Terms— microhardness, dynamic recovery, precipitation hardening, Artificial neural networks (ANNs), Rprop algorithm, Rprop, age-
hardening 

——————————      —————————— 

1 INTRODUCTION                                                                     
here is now a great interest in developing highly form-
able aluminium alloys and, in particular Al-Mg based 
alloys. Aluminium alloys with magnesium as the major 

alloying element which achieve high strength with good 
ductility through cold work, have been considered for use 
in a wide variety of applications [1] due to their low densi-
ty, excellent properties, over all Al alloys, such as high 
strength, good formability, corrosion resistance and welda-
bility. As wrought non-heat treatable alloys, their strength is 
derived mainly from solid solution strengthening by Mg 
which has a substantial solid solubility in Al, and strain 
hardening [2]. Sn as a minor alloying element in Al alloys 
[3] can increase the strength by solution strengthening [4].  
Sn as unconvential alloying element in reasonable combina-
tion with Al and Mg alloys is a basis for advanced applica-
tions [5]. In the past, Sn was added to increase the fluidity of 
casting alloys and presently it is added to alloys for bear-
ings because of its excellent anti-welding characteristics 
with iron, its low modulus and low strength [6], as provid-
ing suitable surface properties [7]. 
     Hardness as a complex property related to the strength 
of interatomic forces, is defined as the resistance of a mate-
rial to local plastic deformation. Microhardness testing can 
be the easiest way to determine the mechanical properties of 
the different phases of the structure and follow aging be-
haviour during phase decomposition sequence [8]. 
     Recently, automated techniques [9-14] (based on artificial 
intelligence approaches) for generating, collecting, and stor-
ing data from scientific measurements have become increas-
ing precise and powerful. An artificial neural network 
(ANN) is a nonlinear computing system consisting of a 

large number of interconnected processing units (neurons) 
that simulates human brain learning. 
      The possibility of using ANN method for modeling the 
hardness was investigated [15-19]. According to the univer-
sal approximation theory [9-14], an ANN with a single, two, 
three, …, hidden layers with the proper number of hidden 
neurons can map any nonlinear function to any desired ac-
curacy. 
       In our work, ANN and back propagation algorithm 
(Rprop) were employed to simulate and predict the micro-
hardness, Hv, as a function of  Sn% addition, aging temper-
ature, T, load, L, and dwell time, t. This paper is organized 
into five sections. Section 2 provides experimental proce-
dure of solution treatment and aging process. Section 3, 
gives a review of basics of the ANN technique. Result and 
discussion are provided in section 4.    

2 EXPERIMENTAL PROCEDURE: 
Aluminum-Magnesium based alloys containing 3wt.%Mg and 
tertiary alloys (Al-3wt.%Mg-xwt.%Sn) with x= (0, 0.2, 0.5, 1, 
1.5,  2, 2.5) were prepared from elements of 99.9% purity (Al), 
99.9 (Mg) and 99.99 Sn. These alloys were prepared by 
weighting the proper ratios of their components and each 
composition was melt in graphite crucible placed in the stable 
zone of a muffle furnace adjusted at 1123K, which is a temper-
ature above the melting point of Al and Mg. When Al is com-
pletely melt cleaner material is added to remove all the gases 
and the impurities inside it, then Mg is added to Al until it 
completely melt. Finally Sn is added and the casting was car-
ried out in hot iron moulds. The melt was cooled in iced wa-
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ter.  
      All specimens were given an initial annealing for 8h, at 
773K and then quenched in cold water. The ingots were rolled 
with intermediate annealing at 773K to obtain sheets of 7cm 
length, 3cm width and 0.1cm thickness. The micro-hardness 
measurements, the Vickers micro-hardness values Hv, were 
obtained by using (Leco microhardness tester LM 700). The 
tested sheets were heated for 2h in the working temperature 
range from 443K to 503K in steps of 10 K, then quenched in 
cold water kept at room temperature (RT). The surface of any 
tested sample was polished by using polishing machine 
(KNUTH-ROTOR 2 STRUERS) then examined by an optical 
microscope having magnification of 20X and 50X. Hardness 
indentation was obtained by applying automatically the loads 
10, 50, 100 and 300 g for the dwell times 10, 20, 30 and 40 s. 
The two lines which move at opposite sides of the indentation, 
were adjusted to the edges of the indentation diagonals and 
the end button was pressed to show the mean diagonal value 
and the corresponding hardness value.  

3 ARTIFICIAL NEURAL NETWORK:  
Artificial neural networks [12] ANNs are a portion of “Expert 
Systems” or “Computational Intelligence Systems” that in-
spired from the architecture and internal features of the hu-
man brain and nervous system. ANNs are consisting of a large 
number of simple processing elements called as neurons. Their 
power comes from the parallel processing of the data infor-
mation that follows from input layer to output layer via neu-
rons‟ connections as shown in Fig. 1. The Multi-layer feed 
forward (MLFF) neural network is the most common neural 
network structure. The relationship between the i th output 
(yRiR) and the inputs (xR1R,xR2R,...,xRpR) has the following mathematical 
representation [13-19]: 

 

 (1)                             
where, h and g are activation functions of hidden and output 
layers respectively; wRijR (i = 0,1,2,…,p, j = 1,2,….q) and wRjR (j= 
0,1,2,….q) are connection weights of network; p and q are the 
number of nodes at input and hidden layers respectively and 
wR0jR and wR0ijR are biases value of output and hidden layers, re-
spectively.  

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. The general layout of a feed forward neural network 

      In this technique, the network consists of an input layer, an 
output layer and a number of hidden layers. At each node in a 
layer, the information is received, stored, processed, and 
communicated further to nodes in the next layer. All the 
weights are initialized to small random numeric values at the 
beginning of training. These weights are updated or modified 
iteratively using the generalized delta rule or the steepest gra-
dient descent principle. The training process converges when 
no considerable change is observed in the values associated 
with the connection links or when a termination criterion is 
satisfied [20]. 
     The methodology used for the assessment of network per-
formance involves obtaining the minimum statistical measures 
of error between experimental data and simulated results (cal-
culated) of hardness by the model. Statistical parameters, 
namely, Mean Absolute Error (MAE), Root Mean Square Error 
(RMSE), Standard Error (SE) and coefficient of determination 
(R P

2
P) represented by equations were used to check the perfor-

mance of the developed model[21]. 
      A well-trained ANN model should produce small MAE, 
RMSE and SE with large  values [21]. The ANN model was 
trained with varying numbers of neurons and randomly cho-
sen logsig (Log sigmoid) transfer functions and Trainrp (Resil-
ient back propagation; Rprop) algorithm for hidden layer. 
      BP algorithms [12] consist of several training methods such 
as Quasi-Newton algorithms, Levenberg-Marquardt method, 
Conjugate Gradient algorithms, Resilient Backpropagation 
algorithm, etc. All of these algorithms have their benefits and 
suitable for specified ANNs according to the number of layers, 
nodes and transfer functions in each layer. We use Resilient 
Backpropagation algorithm to eliminate harmful effects of 
squashing functions in the magnitudes of the partial deriva-
tives and for faster training as described elsewhere 
[11,12,21,22].  
 
4 Results and Discussion:       
The leveling off and pronounced oscillations of the age-
hardening curves in Fig. 2 (a – d), which were observed previ-
ously [6], in these curves beyond 443K, provide a clear indica-
tion of instability. The hardness peaks observed for all the 
curves may correspond to different aging processes. These 
oscillations are readily understood in terms of competition 
between a metallurgical reaction concerning the structure var-
iations [23] besides the very effective role of Mg in reducing 
the rate of creep [24], which tends to increase the hardness and 
the thermally induced intrinsic decrease in hardness with in-
creasing aging temperature. The hardness therefore never 
produces the behaviour of homogeneity and stabilization as 
long as the reaction proceeds to completion until competition 
comes to an end and then a certain regular behaviour domi-
nates, which is not attained in the curves obtained in the test-

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013                                                               1579 
ISSN 2229-5518 
 

IJSER © 2013 
http://www.ijser.org  

ed temperature range under the applied loads and the dwell 
times considered. This unstable behaviour cannot be ex-
plained here by the onset of recrystallization, which occurs  
at a temperature higher than 523K [24]. As can be seen from 
the optical micrographs of the as cast binary and tertiary al-
loys containing 0.2 and 2 wt.% Sn given in Fig. 3 (a - c), these 
alloys exhibit a typical dendritic structure. When increasing Sn 
content, the dendritic structures become more obvious, and 
the dendrites are gradually refined. Moreover, some rod-like 
phase accumulates with cluster morphology in the tertiary 
alloy with 0.2 wt.% Sn and some white particles can also be 
found. The cumulate rod-like phase decreases but number 
density of white particles increases. In the alloy containing the 
highest Sn (2.5 wt.%) the rod-like phase has changed to disso-
ciative morphology, and a semi-continuous phase can be 
found , which is of lower strength than the rod-like phase. 
This leads to the softening observed in the alloys containing 
Sn. It is clear that the refined dendrite is considered a conse-
quence of the increased Sn content, which also change the co-
lumnar grains to equiaxed [6]. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2:(a) Temperature dependence of, Hv, under 10g and 10s, 

and ANN simulation of hardness with temperature. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2: (b) Dwell time dependence of, Hv, under 10 g at 453K, 

and ANN simulation of hardness with time. 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
Fig. 2: (c) Sn content dependence of , Hv, under different loads 

at 453K and 10 s, and ANN simulation of hardness 
with %Sn at different load.    

 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2: (d) Sn content dependence of, Hv, under 10 g and dif-

ferent dwell times at 453K, and ANN simulation of 
hardness with %Sn at different time. 
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. 

The experimental data are divided into two sets, namely, train-
ing set and validation set. The training set is used to train the 
ANN model by adjusting the link weights of network model, 
which should include the data covering the entire experi-
mental space. The inputs of the networks are: (a) temperature, 
T, and concentration Sn%, (b) dwell time, t, and concentration 
Sn%, (c) concentration Sn% and loads, L, and (d) concentration 
Sn% and dwell time, t, while the output is hardness Hv. The 
validation data set is used to confirm the accuracy of the ANN 
model. The proposed four individual networks are: 
    1- The first network was configurated to have inputs (a) and 
the output is Hv. Fig. 4 represent a block diagram of the four 
ANN based modeling 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 4: Block diagram of the four ANN based modeling. 

 

 

 

 

 

 

 

 
 

  2- Also, second, third and fourth network are configurated to 
have b,c and d as inputs and the Hv as an output, Fig. 4. 
    The first ANN having three hidden layers of 60, 70 and 50 
neurons, second network: 20, 30 and 40 neurons, third net-
work: 15, 14 and 13 neurons and finally fourth: 18, 17 and 16 
neurons respectively. Network performance was evaluated by 
plotting the ANN model output (Hv) against the experimental 
data and analyzing the percentage error between the predicted 
and the experimental data (Fig. 5). In the training process, 91, 
129, 800 and 800 epochs was found to be sufficient, Fig. 5, with 
respect to the minimum error of 8.0829×10-6, 7.8199×10-6, 
0.12283 and 0.30925 errors (mean sum of square error MSE). 
For all networks, the function which describes the nonlinear 
relationship of the hardness Hv is given in appendix A.  

                  
 
 
 
 
 
 
 
 
 
 
 
 
                                    
 
  
 
 
 
 
 
 
 
 
 

Fig. 3: Optical micrographs with 50X for the samples: (a) Al-3wt.% Mg alloy, 
          (b) Al-3wt.% Mg- 0.2wt.%Sn alloy, and (c) Al-3wt.% Mg 2.5wt.%Sn alloy 
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Fig. 5: Performance for hardness using ANN model, 
where epochs are the number of training 

      Figure 2 (a-d) shows the simulation results of hardness Hv 
using our obtained function in appendix A. These figures 
demonstrate the good agreement between the experimental 
data and calculated results. Fig. 2a represent the simulation 
results for Hv with temperature at Sn concentration (0.2 – 10%) 
using a constant load 10g and time 10 s. ANN simulation of 
Hv with time as shown in Fig. 2b for different concentration 
and also for constant load 10 g and temperature 453K. Fig. 2c 
shows the training of ANN model for Hv versus concentration 
at different load (10 – 300 g) and constant  of time 10s and 
temperature 453K. The hardness Hv based ANN model 
against the same concentration for time (10 – 120 s) at constant 
load 10 g and temperature 453K represented in Fig. 2d. The 
importance of the obtained function (appendix A) is that they 
can describe different types of Hv at different temperature, 
concentration, time and load. Also our obtained function can 
be used to make predictions about measurements that have 
not yet been performed. 
    After the completion of the training stage the testing stage 
took place. It was found Hv are predicted at concentration 
(Sn% = 5, 10) in Fig. 2 (a and b), at low and high load (L = 5, 
400 g) as in Fig. 2c and at time (t = 60, 120 s) respectively.  

The agreement between the predicted and experimental da-
ta is especially significant. We also conclude that the ANN 
models were able to perfectly model and simulate the hard-
ness at different concentration, load and time.   
 
5. Conclusion: 
- Age hardening curves of Al-Mg and Al-Mg –Sn alloys 

showed a leveling off and pronounced oscillations in  the 
temperature range 443-503 K. 

 - Sn addition induced a decrease in hardness data relative to 
those of the binary Al-Mg alloy and the tertiary alloys 
showed a strong.  

- In general, increasing temperature, dwell time, applied load 
and Sn content caused a decrease in hardness. 

- The simulated and predicted results of ANN model are per-
fectly model in mechanical properties of metals and alloys. 

 
Appendix A.  
The equation which describes hardness is given by: 
HRV R = pureline [net. LW{4,3} logsig (net. LW{3,2} poslin 
(net.LW{2,1} poslin (net. IW{1,1}T net. B{1})  net. B{2})  net. B{3})  
net. B{4}], where pureline is the linear transfer function, logsig is the 
log–sigmoid transfer function and poslin is the positive linear func-
tion, as shown in the following figure. 
 
 
 
 
 
 

 
T: the input , 
net. IW{1,1}: linked weights between the input layer and first hidden 
layer, 
net. LW{2,1}: linked weights between the first hidden layer and the 
second hidden layer, 
net. LW{3,2}: linked weights between the second hidden layer and 
third layer, 
net. LW{4,3}: linked weights between the third hidden layer and 
output layer, 
net. B{1}: the bias of the first hidden layer, 
net. B{2}: the bias of the second hidden layer, 
net. B{3}: the bias of the third hidden layer, and 
net. B{4}: the bias of the output layer. 
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